

# JPL Radiation Capabilities



### **Environment Modeling and Effects**

- **Environment Model:**
- Space Radiation Environment model:
  - Divine and GIRE for electron and proton environments; HIC for heavy ions
  - Solar Proton Events (JPL SPE Model), GCR, and Earth (AE8/AP8, CRRES)
- Space Plasma/Atmosphere Model
- Meteoroid and Debris Model JPL METEM model
- Environmental Effects Model:
  - Spacecraft Shielding Models NOVICE, GEANT4, TIGER, MCNPX for modeling the detailed dose and SEU environments
  - Detailed Shielding and transport analysis
  - Hypervelocity Impact Analysis
  - Spacecraft Charging Detailed IESD and surface charging analysis and modeling (NUMIT for IESD)
- Reliability Analysis
- Failure mechanism & probabilistic risk assessment

Rad-hard Digital and Mixed Signal ASIC Development

- Custom 1 Mrad digital ASIC development experience on Cassini for both Honeywell and UTMC
- Flight qualified, in-house rad-hard digital, mixedsignal and power ASIC development process
- In-house mixed signal and power ASIC design capability for Honeywell Technologies, 1 Mrad, LET>75MeV
- In-house "rad-hard by design" and "extreme temperature" design capability on commercial foundries
- Rad-tolerant low-noise low-power analog signal chain circuits for detectors, telecommunication subsystems, and digital processing for imagers
- Custom and commercial rad-hard DC-DC converters up to 1 Mrad
- Mixed-voltage rad-hard integrated circuits for drive and control of sensors and actuators

## **Planetary Protection**

- Biological contamination control including clean benches, handling controls, cleaning
- Bacterial burden accounting Materials and accessibility
- Microbial reduction
- Recontamination prevention

# **Rad-hard Imager and Sensor Development**

- Visible CCD and CMOS imager design capabilities
- Visible and IR focal plane array analysis and test
- Cryogenic optical and electrical characterization
- Performance modeling
- Radiation hardness testing

#### In-house Radiation Testing and Qualification

- Low and high dose rate Co-60 gamma vaults for testing
- Heavy ion and proton Single Event Effects (SEE) testing
- Cf-252 and laser SEE test facilities
- Materials properties testing
- Electrical testing of FPAs, detectors, sensors VLSI IC's, memories, FPGAs, microprocessors, linear, and mixed signal devices
- Parts procurement, screening and lot acceptance testing





- Maintenance of Radiation database
- GIDEP and NASA alerts tracking
- NASA Electronic Parts Assurance
- Counterfeit parts monitoring program
- Reliability and radiation qualification
- Comprehensive failure analysis laboratory and capabilities
- Device construction analysis
- Reliability analysis and testing

#### **Instrument Development**

- Instruments in work for Juno, JWST, ISS, Airborne platforms.
- Micro Device Laboratory (MDL) facility
  - cleanroom facilities range from class 100.000 to class 10
  - over 130 individual pieces of processing equipment



Fully populated Suss MicroTec Inc., gamma microlithography 4module cluster cassette-tocassette spin/developer system.



8-inch Gen200 MBE manufactured by Veeco

# Design, Fabrication and Qualification including

- Low-noise focal planes & electronics
- Infrared Detectors
- Submillimeter Devices
- Nano and Microsystems
  - **Optical Components**
- Advanced UV-Visible-**NIR Detectors**
- Semiconductor Lasers
- Cynthia Kingery, Environment Modeling and Effects, Cynthia.Kingery@jpl.nasa.gov, 818-393-4939
- Randle Blue, Rad-hard Digital and Mixed Signal ASIC Development, Randel.C.Blue@jpl.nasa.gov, 818-354-9795
- Gregory Carr, Rad-hard Power ASIC Development, Gregory.A.Carr@jpl.nasa.gov, 818-354-0680
- Laura Newlin, Planetary Protection, Laura.E.Newlin@jpl.nasa.gov, 818-354-0130
- Robert Menke, In-house Radiation Testing and Qualification, Robert.J.Menke@jpl.nasa.gov, 818-393-7780
- Robert Staehle, Instrument and Rad-hard Imager and Sensor Development, Robert.L.Staehle@jpl.nasa.gov, 818-354-1176

# JHU/APL Radiation Capabilities



## Radiation Testing at the Part and Board Level

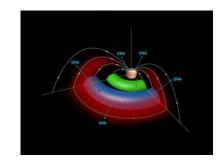
- High dose rate (TID) testing
- Low dose rate (ELDRS) testing
- SEE with heavy ions testing
- Proton SEE/DDD testing
- Neutron DDD testing
- In-house testing capability:





#### Irradiator:

JL Shepherd & Associates Model 81-22 Irradiator
-High & low dose rate capability

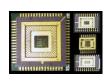



Electrical Measurements
Verigy 93000 Digital Test System

- 552 Digital I/O Channels
- -16 Million Test Vector Memory

# **Radiation Modeling & Assessment**

- Environment Prediction Models: Spenvis (Near Earth), GIRE (Jovian)
- Radiation Transport Dose Depth Curves: Shield Dose II, NOVICE
- SEU Rate Prediction Models: CREME96
- Comprehensive Radiation Transport Models: GEANT4, MRED
- Neutron modeling
- Review & approve preliminary/final parts lists
  - Assess for TID, SEE & ELDRS
- Shielding & Derating Analyses
- Post-launch investigations




# Spacecraft Charging (modeling and testing)

#### **Detector & Instrument Development**

### **Radiation Tolerant Mixed-Signal ASIC Design**

- In-house mixed-signal analog and digital design capabilities
- Flight heritage: New Horizons (Pluto), Messenger (Mercury), Cassini
- Signal conditioning, telemetry collection, and data processing for S/C subsystems and instruments
- Experience with high radiation APL ASICs baselined for Radiation Belt Storm Probe
- Experience with radiation-hardened-by-design techniques and dedicated rad-hard fabs
- Custom circuit layouts for TID, SEL, and SEU mitigation
- Experience with flight qualification of internally designed ASICs





- Dr. David Roth, Radiation Engineer/Physicist/Modeling/Test, <a href="mailto:david.roth@jhuapl.edu">david.roth@jhuapl.edu</a>, 240-228-4022
- > Dr. Richard Maurer, Radiation Engineer/Physicist/Modeling, richard.maurer@jhuapl.edu, 240-228-6482
- Dr. Alan Tipton, Radiation Engineer/Electrical Engineer/Modeling/Test, alan.tipton@jhuapl.edu, 240-228-9114
- > Dr. Mark Martin, ASIC Design, <a href="mark.martin@jhuapl.edu">mark.martin@jhuapl.edu</a>, 240-228-7895
- Dr. Richard Meitzler, ASIC Design, richard.meitzler@jhuapl.edu, 240-228-713